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A new Hermitian operator basis set for spins of any quantum
number is presented for use in simulations of NMR experiments.
The advantage with a Hermitian operator basis is that the Liouville—
von Neumann equation, including relaxation with dynamic
frequency shifts, is real. Real algebra makes numerical calcula-
tions faster and simplifies physical interpretation of the equation
system as compared to complex algebra. The unity operator is
included in the Hermitian operator basis, which makes it easy
to rewrite the inhomogeneous Liouville-von Neumann equation
into a homogeneous form. The unity operator also simplifies
physical interpretation of the equation system for coupled spin
Systems.  © 2001 Academic Press
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Hermitian operator does have a real eigenvalue. A quantum me
chanical operator corresponding to a physical observable is tht
always Hermitian 10). A Hermitian operator basis simplifies
physical interpretation of the quantum mechanical master eque
tion and makes numerical calculations faster because it uses on
real algebra. The master equation is real even when relaxatio
with or without dynamic frequency shift 1), isincluded. There
are also several advantages with having the unity operator in th
set of basis operators. It is then easy to rewrite the Liouville-
von Neumann equation including relaxation, into a homogenou
form from its usual inhomogeneous ford, 13. The physical
interpretation of the Liouville—von Neumann equation for cou-
pled spin systems also becomes easier when the unity operat

is included because the respective single-spin operators are th
a part of the complete set of basis operators.
INTRODUCTION

o . . o . THEORY
Rapid simulation of NMR experiments is important in the

development and optimization of pulse sequences, mixing se\we will first discuss the development of the new set of
quences, shaped pulses, and other tools in the toolbox of modg&tmitian basis operators. We will then use this basis to set u
NMR. Simulations have also shown to be useful in the analjhe Liouville—~von Neumann equation including both coherent
sis of experimental results concerning structures and dynamigf] incoherent (relaxation) contributions for both a spia 1
of molecules. This paper describes a way to make simulatiofnscleus and a spi = 2 nucleus. The Liouville-von Neumann
of NMR expenments involving spins with a quantum numbegquation is finally rewrltten into a mathematically homogeneous
larger than faster than using other methods. form from its usual inhomogeneous form.

Calculauons of the spin dynamics involving s> % nu-
clei have traditionally been performed using an operator basisrmitian Operator Basis
consisting of either the level shift operato3 ¢r the irreducible
tensor operator®j. There exists also other useful operator bE}rr
sis sets such as Cartesian product opera®yrd)( products of
shift operatorsR), polarization operator$j, and the Cartesian
single-transition operator3 (8).

Here we present a new complete operator basis set for any
spin quantum number. The operator basis is Hermitian and it

The basis to be presented is based on linear combinations
educible tensor operators. The matrix representations of th
irreducible tensor operators can be calculated using Wigner 3-
symbols, according t®]

S S
Tog=vV2S+1IV2k+1 Y > (-1)MW

includes the unity operator. The basis set is constructed from M=-SMp=-S
linear combinations of the irreducible tensor operators. S k S
The Liouville—~von Neumann equation, the quantum mechani- X [ M g M p] IS, M)(S, Mpl, (1]

cal master equation, is real when expressed in a Hermitian basis

(9). A physical observable is described by a real value and,gqre 0< k < 2Sand—k < q < k in steps of 1. The normal-

ization is such thaT0 o = E for any spin quantum numb&: It

1 To whom correspondence should be addressed. is well known that the Cartesian product operat8ysS,, and

;

1090-7807/01 $35.00
Copyright© 2001 by Academic Press
All rights of reproduction in any form reserved.
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S foraspinS= % nucleus are Hermitian and can be calculated 0 0 -1
from irreducible tensor operators according3p ( ci y=5%5+8S=i|0 0 0] [13]
1 1
S = z—ﬁ(Tl, 1~ T 1) (2] 1 oo
| ) . | 0 -1 0
2 2 1
S = —Zﬁ(Tf_l + 7). 3] Coy=55+55= 2 10 1} [14]
0 -1 0
1_1:
Sz = ETfO‘ [4] 1 1 0 0
1 _ 2 - = _
Inspired by this we form linear combinations of the irreducible Coz = \/§(SZ 2E/3) 3 0 -2 0}, [19]
tensor operators not only for single-quantum coherences, but for 0 0 1
all coherences according to . 0 1 0
1
NECESE CLi=SS+SS=-—=|1 0 -1,  [16]
Clon= "= (g + (VTS a#0 [5] V2o -1 0
iv/S(S+1)/3 0 01
Cks,qy =T 5 (Tkiq - (-1 Tk?q) q#0, [6] 1 2 2
V2 CGx=S-§=|0 0 0] [17]
1 00

Ce,=vS(S+1)/3T a=0, [7]

where 0< k < 2Sand 0< q < kin steps of 1. Itis easy to ShOWThe operators and thus the matrices are orthogonal to each ott

thatthese operators are orthogonal to each other and thatthe)?gﬂe normalized according to Eqg. [8]. Several of these opers

Hermitian using well-known relations for the irreducible tenso3 S_l(fﬁn be nartnic:i according to the product optzrattor forn"lnahsr
operators The basis is normalized so B3} = S,, C =S, ). The operatoC; , = S5 + S.§ corresponds to single-

andC3, = S, irrespective of spin quantum numb&n e, quantum antiphase magnetization whil€; | = S,S, + /S,
1.0 corresponds to smgle quantum antlphyseagnenzatlon The

S+ 1)(2S+ 1) operatorS:2 oy = SS/ andC2 2y = S§ + § Scaredenoted

Adj.
(Cr1Cs) = Tr{Cr : Cs} =drs 3 . 8] double- -quantum coherenxandy magnetization, respectively.

whereC; andCs are the basis operators and Adj. stands fgjomogeneous Master Equation
the adjoint. In the present case we are using a Hermitian basis,
which by definition is self-adjoinCAd- = C, and the distinction The Liouville—~von Neumann equation including relaxation

is obviously irrelevant. can be written using superoperators suchbas (
Hermitian Basis for Spin S 1 d - 0 a4 1:“)0 +Po (18]
-0 = — 0s
There are a total of @+ 1)°> = 9 orthogonal operators for dt
spinS = 1. These are according to Eqgs. [1] and [5]—{[7] with
1 00 A
Ho =[H, o], 19
Cl,=2/3E=y2/3|0 1 0], [9] o =[H.] [19]
0 01 whereo is the density operator as a function of tineg,is the
0 -1 0 density operator at equilibriunt{ is the Hamiltonignﬁ is the
cl _g — I 1 0 -1 [10] commutator superopetator of the Hamiltonian, &nis the re-
Ly =S = E ’ laxation superoperatoii corresponds to the coherent contribu-
0 1 0 tion andrI to the incoherent contribution to the master equation
10 0 Double carets indicate superoperators.
cl —s—|o o o 1 The Liouville—von Neumann equation can easily be rewritter
12= S = ’ [11] in a homogeneous form(when the unity operator is included
00 -1 in the basis12, 13
1 010 d N 2 d 2 2
C%x =S = _2 1 0 1/, [12] ao =—(H+T)o+Tog— ao = —(i H + Timprovedo-
010

[20]
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One method for doing it is to include the vector correspondiri@ynamic Model
to the relaxation superoperator multiplied with the equilibrium

density operatora, as the column in the matrix ki + I') Qentonthe dynamics of the nucleus studieg, (7). A dynamic

at the position corresponding fo the unl_ty operator,_ column model can be used to describe the motional properties of vecto
Both the row and the column corresponding to the unity operator

. ) 4 nuclei and molecules. The dynamic model can then be used 1
in the density operator are zero before being used to make . .

. . alculate an analytical complex spectral density funci@(a).
inhomogeneous master equation homogeneous, see Eq. [3

e relaxation rates are functions of the real part of the spectre
density functionJ(w), at certain angular frequencies. The most
common and simple real spectral density function is the single

The isotropic liquid HamiltonianH, for spinS> % with nu-  Lorentzian
clear quadrupolar coupling and an axially symmetric electric
field gradient tensor in the presence of an RF field in the rotat- J(w) = 2
ing frame is 8, 5) 5

The relaxation rates and dynamic frequency shifts are deper

The Coherent Contribution

Tc

TH on -

1 wherert, is the correlation time. The imaginary contribution to
H=QS + wqg (Sf — §SZ> + wx S+ wy Sy, [21] the complex spectral density functiob(w), is defined as the
Hilbert transform ofJ(w) and can be identified with a dynamic
frequency shift {1). The imaginary contribution isL{l)

with
L) = 2% 26
Q = o — onr, ©) = 5 T @ [26]
@x =~y BLCos(g), [22] The real part of the spectral density function is an even functior
wy = —y Bysin(g), of frequency while the imaginary part is an odd function of
frequency.
and
Relaxation
3¢°qQ

0= e, [23] The elements of the Redfield relaxation matrix for quadrupole
45(2S—-1)h relaxation including dynamic frequency shifts on the basis of any

) ) ) ] complete set of operatoB can be calculated according to
where @ is the offset chemical shift frequencyg is the

quadrupolar frequencyy, andwy are the components of the 1 2

RF field along thex andy axes, respectivelyy is the Larmor s = Ewé Z (J(qw)

frequencywger is the frequency of the RF fielgh,B; is the mag- q=-2

netogyric ratio times the strength of the RF fieids the phase [AS,.B ]Ade[AS By

ofthe RFfieldgis the elementary chargejs the principal com- —iL(qw)) Tr 29 1 20 =10 127]
ponent of the electric field gradient tensor, &dds the electric (Br | Br)

quadrupole moment of the nucleus. The quadrupolar frequency
wq averages to 0 in isotropic liquid state and should not realyith the interaction operators for quadrupole relaxatibf) (
be present in the current Hamiltonian. A small fraction of the

guadrupolar interaction can however remain in partially oriented A, =35 -S,
systems 14, 15. The Hamiltonian commutation superoperator
can be calculated matrix element by element for any set of basis AS . — :F\/—E (SS: + S.S) [28]
operatorsB according to %) 2,+1 2 ’
5 AS =1@§
(BrIHIBs) (B | [H, Bs]) 2827 o TH

rs —

(B-1B) (B |B)
T and the following relations for the odd and even spectral densit

_ (B IHB—BH) T{B(HB.—BH)] ) functions
(Br | B) (e’ e )
J(-0) = (),
All these elements are purely imaginary if the operator basis set L(0) =0 [29]

B is Hermitian, thus making the coherent part of the Liouville—
von Neumann equation red)( L(-w) = —L(»),
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in which J(w) is the real component arldw) is the imaginary 1

component of the complex spectral density funci@(@). The 2% = 56‘%[‘](“’) +23(20)]. [34]
relaxation rates are calculated assuming an isotropic liquid and 1

an axially symmetric electric field gradient tensor. Relaxation A= éa)é[?)J(O) + J(w) + 23 (2w)], [33]
in locally anisotropic systems requires further considerations , )

(14, 15. p° = wglI(@)], [36]

The Homogeneous Master Equation for Spia $ and the dynamic frequency shift contribution is

The coherent part of the master equation calculated using as _ L o L oL (2 37
Eq. [24] and Eq. [18] for the particular case of a single isolated @o= GwQ[ (@) +2L (20)]. (371
spinS = 1 nucleus in the Hermitian basis is

[ Co. | [0 O 0 0 0 0 0 0 07T Co:]
Ciy 0 0 w —-Q O 0 0 —wQ 0 Ciy
Ci. 0 —wx O wy 0 0 0 0 0 Ci,
Cix 0 2 -w, 0 0 g 0 o 0 ||cy,
% Cozy|==|0 0 0 0 0 —w 0 o —22||Cuyl. [30]
Cay 0 0 0 -wy wy 0 V3wx - wx || Cay
Ca. 0 O 0 0 0 —/3uwy 0 V3w, 0 Ca,
C2,x 0 wQ 0 —Wx Q — 3(,z)y 0 a)y CZ.x
| C2.2x | |0 O 0 0 X —uwy 0 —wy 0 | [ Coa
where all parameters have already been defined.
The relaxation superoperator for a sfr= 1 nucleus calculated according to Eq. [27] and Eq. [18] is
0 0O O 0 0 O 0 0 7] 0 ]
0 0 —o¥ 0 0 O 0 0 0
0 p 0 0 0 O 0 0 Mop
A 0 o 0 0 0 O 0 0 A 0
r'=| 0 0 0 0 2 0 0 0 -2, Top=| 0 |, [31]
0O 0 0 O 0 A 0 —o¥ 0 0
0O 0 0 O 0 0 p2 0 0 0
0O 0 0 O 0 o™ 0 A% 0 0
| 0 0 0 0 2 0 o0 0 A2 | 0 |

in which Mg is the equilibrium magnetization. The relaxation
rates are

1 The complete homogeneous master equation is obtained |

A= (—swé[SJ(O) + 5J(w) + 2J(2w)], [32] the addition of the coherent part from Eq. [30] and the incoheren
relaxation part from Eqg. [31]. The inhomogeneous equation sys

tem can also be made homogeneous according to the princip

1 2
p= §wQ[J(w) +43(0)], [33] presented previously for Eq. [20]. The result is
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[V273E] T o 0 0 0 0 0 0 0 0 VZJ3E]
Ciy 0 2 o —(Q+ o) 0 0 0 —wo 0 Ciy
Ci, —/3/2Mgp —wy o wy 0 0 0 0 Ci,
Cix 0 Q+o'  —w, s 0 g 0 0 0 Cix

% Cozy | =— 0 0 0 0 22 —oy 0 wx —2(Q + ™) Cozy |. [38]

Cay 0 0 —wg wy A2 V3ox (2 + o) wx Cay
Ca, 0 0 0 —/3wy p2 3wy 0 Ca
Cox 0 ®Q 0 —wy Q + o9 —\/_Swy A2t wy Cox

| Coz | 0 0 0 0 2AQ+ 0% —o 0 —wy, 222 1 L comx |

Equation [38] is the complete homogeneous master equation for &spih nucleus in a Hermitian basis.

The Homogeneous Master Equation for Spi&%

The master equation for spB= % can be calculated using the same equations as for&pirl. After making the equation
system homogeneous the result is

[/5/4E]
Cuy
Cl.z

C3, 3y

r 0 0 0 0
0 A wy —(Q + wll)
—/4/5Mop —Wx P Wy
0 (Q + a)n) —wy A
0 0 0 0
0 0 0 —V12/50q
0 0 0 0
_ 0 VI2/50q 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 " 0 —w®
0 0 o 0
0 w® 0 %
0 0 0 0
L 0 0 0 0
0 0 0 0
0 0 u 0
0 0 0 o
0 0 w® 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 V8/5wq 0
0 20q 0 0
A3 —/3/2wy 0 0
\/Wwy 232 —/5/2wy 0
0 V52w, A8t /By
0 0 —V6ay p°
0 520  (Q+ %) —bo,
—/3/ 2wy (2§2 + a)32) —/5/ 2wy 0
(SQ + w33) —/3/2wx 0 0

0
/5/2wy

—(Q + a)31)

V6w,
)\‘31
—/5/2wy
0

0 0 0 0
0 0  —JI2/5wo 0
0 0 0 0
JI2Bwg 0 0 0
—wy 0 Wx —(2Q + 0®)
A2t \/§wx — (Q + a)21) wx
—+/3wy p? NEY 0
@+0?) —VEo, A "
—wy 0 —wy 222
0 0 0 0
0 0 0 — 20
0 0  —/8/Bwg 0
0 0 0 0
V85w 0 0 0
0 0 0 0
0 0 0 0
0 0 ]
0 0 [V/5/4E7]
0 0 Ciy
0 0 Ciz
—2wq 0 Cuix
0 0 CZ,Zy
0 0 Coy
0 0 C2,z
0 0 gz [39]
V320, —(32 + %) sz
—(22+0¥) V320 Cajzy
«/7 X 0 C3vy
0 0 Cs;
V5720, 0 Cax
UG CO |
—/3/2wy 233 1 7
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with the auto-relaxation rates

A= éa)é[&](O) +5)(w) + 23(2w)], [40]

o= ga)g[J(w) +4J(2w)], [41]
2% = 205[3(0) + 23 (w) + I(2w)]. [42]
A= 205[3(0) + J(w) + 23 (2w)]. [43]
p? = dwd[I(w) + I(2w)], [44]
23 = 205[J(0) + I(20)]. [45]
A% = 205[3(0) + J(2w)]. [46]
A8t = éwé[ZJ(O) + 5J(w) + 33(2w)], [47]
3= gwé[4\](w) + J(2w)], [48]

and the cross-relaxation rates
2 2
i =zV63[I(0) - I(@w)], [49]
8 2
o= ng[J(w) — J(2w)]. [50]

and the dynamic frequency shift contributions

w® = gx/_Gwé[ZL(a)) — L(2w)], [51]
o'l = ga)é[L(w) + 2L (2w)], [52]
0? = 0¥ = 203[L(20)], [53]
o™ = 203[L(»)], [54]
0% = 203[L(w) + L(20)]. [55]
w3t = gwé[—L(a)) + 3L(2w)]. [56]

Simulating Pulse Sequences and NMR Spectra

The solution to the homogeneous master equation

d
G°®=—Po(t) [57]

ot =t + At) = exp[-PAt]o(t = tp), [58]

where P and ¢ are the matrix and vector, respectively,
Egs. [38] and [39].

The observable magnetization can be calculated uging (
(Obg = (Obg\¥" | o), [59]

where observablex and y magnetization correspond to the
operators Obs= S, or Sy, respectively.

DISCUSSION

The off-diagonal anti-symmetric terms in Eq. [30] are due to
the coherent part of the Liouville—von Neumann equation. Thes
terms are rotation rates between basis operators induced by t
Hamiltonian due to the commutator relationships between th
basis operators and the Hamiltonian, Eq. [24].

Information about the relevant commutator relationships fol
the spinS = 1 basis can thus be deduced from the Hamiltoniar
and the matrix representation of the coherent part of the
Liouville—von Neumann equation, Eq. [30]. The tefas, in
the Hamiltonian induces rotation betwe&pand S, with the
rate2 according to

[S. SI=iS,. [60]

Cyclic permutations of the commutator relationships respon
sible for the rotation due to chemical shift are responsible
for the rotations induced by the RF field. The chemical shift
Hamiltonian does also induce rotation betweendthedy mag-
netization of double-quantum coherence according to

[S. S - §]=i2(5S + S50, [61]

i.e., arotation with twice the Larmor frequency. The quadrupola
Hamiltonian,wq(S — 1S?), induces rotation between in-phase

and antiphase single-quantum magnetization with thewate

due to the commutator relationships
[S.S]=i(§S+SS). [62]
[£.5S+88]=iS,. [63]

The incoherent contribution to the master equation consist
of two parts. These are the ordinary auto- and cross-relaxatic
rates from the real part of the spectral density function and th
dynamic frequency shifts from the imaginary part of the spectra
density function, respectively. The auto-relaxation rates can b
found along the diagonal in Eq. [31]. Inthe particular case of spir
% or 1 the relaxation matrix includes only auto-relaxation rates
in the Hermitian basis. For spid > 1 symmetric off-diagonal
cross-relaxation elements also appear in the matrix, see Eq. [3¢

The dynamic frequency shift contributions appear in Eq. [31]
as anti-symmetric off-diagonal elements. These terms, which al
caused by relaxation, occupy the same positions in the matrix ¢
the anti-symmetric elements from the coherent chemical shif
terms in Eq. [30]. The dynamic frequency shift thus modifies

irthe position of the resonance as a function of dynamics, as
should.
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cluded in the basis, which makes it easy to rewrite the LiouviIIe—7' A. Wokaun and R. R. Ernst, Selective excitation and detection in multilevel
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